Let โˆ’โˆ’โ†’ O A = โ†’ a , โˆ’โˆ’โ†’ O B = 12 โ†’ a + 4 โ†’ b O A โ†’ = a โ†’ , O B โ†’ = 12 a โ†’ + 4 b โ†’ and โˆ’โˆ’โ†’ O C = โ†’ b O C โ†’ = b โ†’ , where O O is the origin. If S S is the parallelogram with adjacent sides O A O A and O C O C , then area of the quadrilateral O A B C area of S area of the quadrilateral O A B C area of S is equal to
(1) 6
(2) 10
(3) 7
(4) 8