Let โโโ O A = โ a , โโโ O B = 12 โ a + 4 โ b O A โ = a โ , O B โ = 12 a โ + 4 b โ and โโโ O C = โ b O C โ = b โ , where O O is the origin. If S S is the parallelogram with adjacent sides O A O A and O C O C , then area of the quadrilateral O A B C area of S area of the quadrilateral O A B C area of S is equal to
(1) 6
(2) 10
(3) 7
(4) 8